Can I Return a New Car if It Has Problems
Earlier in Lesson 6, four kinematic equations were introduced and discussed. A useful problem-solving strategy was presented for use with these equations and two examples were given that illustrated the use of the strategy. Then, the application of the kinematic equations and the problem-solving strategy to free-fall motion was discussed and illustrated. In this part of Lesson 6, several sample problems will be presented. These problems allow any student of physics to test their understanding of the use of the four kinematic equations to solve problems involving the one-dimensional motion of objects. You are encouraged to read each problem and practice the use of the strategy in the solution of the problem. Then click the button to check the answer or use the link to view the solution. Given: a = +3.2 m/s2 t = 32.8 s vi = 0 m/s Find: d = (0 m/s)*(32.8 s)+ 0.5*(3.20 m/s2)*(32.8 s)2 d = 1720 m Return to Problem 1 Given: d = 110 m t = 5.21 s vi = 0 m/s Find: 110 m = (0 m/s)*(5.21 s)+ 0.5*(a)*(5.21 s)2 110 m = (13.57 s2)*a a = (110 m)/(13.57 s2) a = 8.10 m/ s2 Return to Problem 2 Given: a = -9.8 m t = 2.6 s vi = 0 m/s Find: vf = ?? d = (0 m/s)*(2.60 s)+ 0.5*(-9.8 m/s2)*(2.60 s)2 d = -33.1 m (- indicates direction) vf = vi + a*t vf = 0 + (-9.8 m/s2)*(2.60 s) vf = -25.5 m/s (- indicates direction) Return to Problem 3 Given: vi = 18.5 m/s vf = 46.1 m/s t = 2.47 s Find: a = ?? a = (46.1 m/s - 18.5 m/s)/(2.47 s) a = 11.2 m/s2 d = vi*t + 0.5*a*t2 d = (18.5 m/s)*(2.47 s)+ 0.5*(11.2 m/s2)*(2.47 s)2 d = 45.7 m + 34.1 m d = 79.8 m (Note: the d can also be calculated using the equation vf 2 = vi 2 + 2*a*d) Return to Problem 4 Given: vi = 0 m/s d = -1.40 m a = -1.67 m/s2 Find: -1.40 m = (0 m/s)*(t)+ 0.5*(-1.67 m/s2)*(t)2 -1.40 m = 0+ (-0.835 m/s2)*(t)2 (-1.40 m)/(-0.835 m/s2) = t2 1.68 s2 = t2 t = 1.29 s Return to Problem 5 Given: vi = 0 m/s vf = 444 m/s t = 1.83 s Find: d = ?? a = (444 m/s - 0 m/s)/(1.83 s) a = 243 m/s2 d = vi*t + 0.5*a*t2 d = (0 m/s)*(1.83 s)+ 0.5*(243 m/s2)*(1.83 s)2 d = 0 m + 406 m d = 406 m (Note: the d can also be calculated using the equation vf 2 = vi 2 + 2*a*d) Return to Problem 6 Given: vi = 0 m/s vf = 7.10 m/s d = 35.4 m Find: (7.10 m/s)2 = (0 m/s)2 + 2*(a)*(35.4 m) 50.4 m2/s2 = (0 m/s)2 + (70.8 m)*a (50.4 m2/s2)/(70.8 m) = a a = 0.712 m/s2 Return to Problem 7 Given: vi = 0 m/s vf = 65 m/s a = 3 m/s2 Find: (65 m/s)2 = (0 m/s)2 + 2*(3 m/s2)*d 4225 m2/s2 = (0 m/s)2 + (6 m/s2)*d (4225 m2/s2)/(6 m/s2) = d d = 704 m Return to Problem 8 Given: vi = 22.4 m/s vf = 0 m/s t = 2.55 s Find: d = (22.4 m/s + 0 m/s)/2 *2.55 s d = (11.2 m/s)*2.55 s d = 28.6 m Return to Problem 9 Given: a = -9.8 m/s2 vf = 0 m/s d = 2.62 m Find: (0 m/s)2 = vi 2 + 2*(-9.8 m/s2)*(2.62 m) 0 m2/s2 = vi 2 - 51.35 m2/s2 51.35 m2/s2 = vi 2 vi = 7.17 m/s Return to Problem 10 Given: a = -9.8 m/s2 vf = 0 m/s d = 1.29 m Find: t = ?? (0 m/s)2 = vi 2 + 2*(-9.8 m/s2)*(1.29 m) 0 m2/s2 = vi 2 - 25.28 m2/s2 25.28 m2/s2 = vi 2 vi = 5.03 m/s To find hang time, find the time to the peak and then double it. vf = vi + a*t 0 m/s = 5.03 m/s + (-9.8 m/s2)*tup -5.03 m/s = (-9.8 m/s2)*tup (-5.03 m/s)/(-9.8 m/s2) = tup tup = 0.513 s hang time = 1.03 s Return to Problem 11 Given: vi = 0 m/s vf = 521 m/s d = 0.840 m Find: (521 m/s)2 = (0 m/s)2 + 2*(a)*(0.840 m) 271441 m2/s2 = (0 m/s)2 + (1.68 m)*a (271441 m2/s2)/(1.68 m) = a a = 1.62*105 m /s2 Return to Problem 12 Given: a = -9.8 m/s2 vf = 0 m/s t = 3.13 s Find: First use: vf = vi + a*t 0 m/s = vi + (-9.8m/s2 )*(3.13 s) 0 m/s = vi - 30.7 m/s vi = 30.7 m/s (30.674 m/s) Now use: vf 2 = vi 2 + 2*a*d (0 m/s)2 = (30.7 m/s)2 + 2*(-9.8m/s2 )*(d) 0 m2/s2 = (940 m 2 /s 2 ) + (-19.6m/s2 )*d -940m 2 /s 2 = (-19.6m/s2 )*d (-940m 2 /s 2)/(-19.6m/s2 ) = d d = 48.0 m Return to Problem 13 Given: vi = 0 m/s d = -370 m a = -9.8 m/s2 Find: -370 m = (0 m/s)*(t)+ 0.5*(-9.8 m/s2)*(t)2 -370 m = 0+ (-4.9 m/s2)*(t)2 (-370 m)/(-4.9 m/s2) = t2 75.5 s2 = t2 t = 8.69 s Return to Problem 14 Given: vi = 367 m/s vf = 0 m/s d = 0.0621 m Find: (0 m/s)2 = (367 m/s)2 + 2*(a)*(0.0621 m) 0 m2/s2 = (134689 m2/s2) + (0.1242 m)*a -134689 m2/s2 = (0.1242 m)*a (-134689 m2/s2)/(0.1242 m) = a a = -1.08*106 m /s2 (The - sign indicates that the bullet slowed down.) Return to Problem 15 Given: a = -9.8 m/s2 t = 3.41 s vi = 0 m/s Find: d = (0 m/s)*(3.41 s)+ 0.5*(-9.8 m/s2)*(3.41 s)2 d = 0 m+ 0.5*(-9.8 m/s2)*(11.63 s2) d = -57.0 m (NOTE: the - sign indicates direction) Return to Problem 16 Given: a = -3.90 m/s2 vf = 0 m/s d = 290 m Find: (0 m/s)2 = vi 2 + 2*(-3.90 m/s2 )*(290 m) 0 m2/s2 = vi 2 - 2262 m2/s2 2262 m2/s2 = vi 2 vi = 47.6 m /s Return to Problem 17 Given: vi = 0 m/s vf = 88.3 m/s d = 1365 m Find: t = ?? (88.3 m/s)2 = (0 m/s)2 + 2*(a)*(1365 m) 7797 m2/s2 = (0 m2/s2) + (2730 m)*a 7797 m2/s2 = (2730 m)*a (7797 m2/s2)/(2730 m) = a a = 2.86 m/s2 vf = vi + a*t 88.3 m/s = 0 m/s + (2.86 m/s2)*t (88.3 m/s)/(2.86 m/s2) = t t = 30. 8 s Return to Problem 18 Given: vi = 0 m/s vf = 112 m/s d = 398 m Find: (112 m/s)2 = (0 m/s)2 + 2*(a)*(398 m) 12544 m2/s2 = 0 m2/s2 + (796 m)*a 12544 m2/s2 = (796 m)*a (12544 m2/s2)/(796 m) = a a = 15.8 m/s2 Return to Problem 19 Given: a = -9.8 m/s2 vf = 0 m/s d = 91.5 m Find: t = ?? vf 2 = vi 2 + 2*a*d (0 m/s)2 = vi 2 + 2*(-9.8 m/s2)*(91.5 m) 0 m2/s2 = vi 2 - 1793 m2/s2 1793 m2/s2 = vi 2 vi = 42.3 m/s Now convert from m/s to mi/hr: vi = 42.3 m/s * (2.23 mi/hr)/(1 m/s) vi = 94.4 mi/hr Return to Problem 20Check Your Understanding
Solutions to Above Problems
Can I Return a New Car if It Has Problems
Source: https://www.physicsclassroom.com/Class/1DKin/U1L6d.cfm
0 Response to "Can I Return a New Car if It Has Problems"
Post a Comment